df<-data.frame(trt=factor(c(1,1,2,2)),resp=c(1,5,3,4),group=factor(c(1,2,1,2)),se=c(0.1,0.3,0.3,0.2))
#example
trt resp group se
1 1 1 1 0.1
2 1 5 2 0.3
3 2 3 1 0.3
4 2 4 2 0.2
#choose specific row from data
df2<-df[c(1,3),]
#example
trt resp group se
1 1 1 1 0.1
3 2 3 1 0.3
#define function summarySE (sd,se,ci)
## Summarizes data. ## Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%). ## data: a data frame. ## measurevar: the name of a column that contains the variable to be summariezed ## groupvars: a vector containing names of columns that contain grouping variables ## na.rm: a boolean that indicates whether to ignore NA's ## conf.interval: the percent range of the confidence interval (default is 95%) summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE, conf.interval=.95, .drop=TRUE) { require(plyr) # New version of length which can handle NA's: if na.rm==T, don't count them length2 <- function (x, na.rm=FALSE) { if (na.rm) sum(!is.na(x)) else length(x) } # This does the summary. For each group's data frame, return a vector with # N, mean, and sd datac <- ddply(data, groupvars, .drop=.drop, .fun = function(xx, col) { c(N = length2(xx[[col]], na.rm=na.rm), mean = mean (xx[[col]], na.rm=na.rm), sd = sd (xx[[col]], na.rm=na.rm) ) }, measurevar ) # Rename the "mean" column datac <- rename(datac, c("mean" = measurevar)) datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean # Confidence interval multiplier for standard error # Calculate t-statistic for confidence interval: # e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1 ciMult <- qt(conf.interval/2 + .5, datac$N-1) datac$ci <- datac$se * ciMult return(datac) }
沒有留言:
張貼留言